In the News
Tuesday, February 15, 2011

- National movement will recognize UA trauma surgeon
 02/14/2011 KOLD-TV
- Kristi's Kid Brittnie gets a new smile (Dr. Craig Hurst, with University Medical Center)
 02/15/2011 KVOA Tucson News
- Spokesman: Giffords recovering part of her ability to speak
 02/15/2011 KWGN-TV - Online
- New Skin Infection Study Findings Have Been Published by Scientists at University of Arizona, Department of Pharmacology
 02/15/2011 Life Science Weekly
- Bike vigil at UMC for mass shooting victims featured on cover of Tucson Pedaler
 02/15/11 Tucson Citizen
- Human chain honors Giffords' doctor Gabrielle Giffords' doctor at University Medical Center.
 02/15/2011 TucsonSentinel.com
- Giffords regains ability to speak, asks for toast
 02/15/2011 WVLT-TV - Online
- Crowder, Tillou royalty at rodeo (University of Arizona to receive a nursing degree)
 02/15/2011 Yuma Daily Sun - Online

New Skin Infection Study Findings Have Been Published by Scientists at University of Arizona, Department of Pharmacology
02/15/2011
Life Science Weekly

Scientists discuss in 'A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain' new findings in Skin Infection. According to recent research published in the journal Bone, "Although musculoskeletal pain is one of the most common causes of chronic pain and physical disability in both developing and developed countries, relatively little is known about the nerve fibers and mechanisms that drive skeletal pain. Small diameter sensory nerve fibers, most of which are C-fiber nociceptors, can be separated into two broad populations: the peptide-rich and peptide-poor nerve fibers."

"Peptide-rich nerve fibers express substance P (SP) and calcitonin gene-related peptide (CGRP). In contrast, the peptide-poor nerve fibers bind to isolectin B4 (IB(4)) and express the purinergic receptor P(2)X(3) and Mas-related G protein-coupled receptor member d (Mrgprd). In the present report, we used mice in which the Mrgprd(+) nerve fibers express genetically encoded axonal tracers to determine the peptide-rich and peptide-poor sensory nerve fibers that innervate the
The researchers concluded: "Thus, therapies that target the specific types of C-nerve fibers that innervate the bone may be uniquely effective in attenuating skeletal pain as compared to skin pain."

Jimenez-Andrade and colleagues published their study in Bone (A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone, 2010;46(2):306-13).

For additional information, contact J.M. Jimenez-Andrade, University of Arizona, Dept. of Pharmacology, College of Medicine, Tucson, AZ 85724 USA.

Copyright © 2011 Life Science Weekly via NewsRx.com